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ALPHA-AUTORADIOGRAPHY AND MORPHOLOGY

OF ACCESSORY ZIRCON SUITES

By

Paul C. Ragland
Department of Geology
University of North Carolina
Chapel Hill, North Carolina

ABSTRACT

Zircons were separated from five bentonites and a variety of
other rocks, after which they were studied by « -autoradiography and
standard petrographic techniques. Differences in elongation, roundirg,
and dispersion of size distributions were found to be useful to distin-
guish between the various zircon suites. Evidence is offered to demon-
strate that: (1) zircons from the five bentonites are apparently from a
homogeneous population; (2) U4t and Th#*t can occupy regular lattice
positions in zircon; and (3) zircons with complex crystal habits are in
general smaller than those with less complex habits. Monazite or other
highly radioactive impurities, which if present generally make up less
than two percent of the zircon suite, can account for more than 50 per-
cent of the radioactivity.

INTRODUCTION

The studies described below were originally undertaken at Rice
University as part of a program to date bentonites by the isotopic ana-
lysis of the uranium and lead in zircon separated from bentonites. The
autoradiographic, petrologic, and mineralogical studies were designed
to get some insight into two fundamental questions: 1) What criteria
can be used to define a suite of zircon minerals as belonging to one
population formed at one time in one geologic environment? 2) What
criteria can be applied to define a closed system in the geochronological
sense? Some authors conclude that the high precision obtained on the
various absolute ages determined on zircon suites separated from
Middle Ordovician bentonites (Adams and Rogers, 1961, Adams, et al.,
1960) is due in large part to the techniques and selection criteria des-
cribed here.

The purpose of this paper, therefore, is (1) to compare < -auto-
radiography with morphologic studies as a means of characterizing a
zircon suite, and (2) to determine the site of the « -emitters in zircons



by autoradiography. Studies of zircon morphology are numerous,.

Poldervaart and his co~workers, for example, have published several
articles concerning zircon morphology and its application to petro-
genetic problems (see Poldervaart, 1955, 1956; Poldervaart and Eckel-
mann, 1955; Larsen and Poldervaart, 1957; Alper and Poldervaart,
1957). This study utilizes some of their techniques to determine the
relationship between zircon morphology and radioactivity.

Considerable information is available concerning the total = -
activity of zircon suites (e. g., Jaffe, et al,, 1959) as well as U and Th
analyses of zircon suites (Hurley and Fairbairn, 1957; Ahrens, 1965).
Few data are available, however, concerning the site of the = -emitters
within an individual zircon crystal. Silver and Deutsch (1963) utilized
the autoradiographic method and some leaching experiments and have
provided considerable quantitative data on the site of U and Th in zir-
con. It is commonly thought, though not proven, that U and Th exist in
solid solution, occupying Zr lattice sites in the crystal. However,

much of the U and Th in felsic igneous rocks has been demonstrated to
be readily leachable by dilute acid, implying that there are other sites
than lattice positions in accessory minerals, McIntire (1963) has point-
ed out that in the case of solid solution, autoradiographs should yield a
uniform track density over the crystal, whereas in the case of occlu-
sion, tracks might be concentrated along certain planes or in patches.
Other possible sites exist, for the fact that much of the radioactivity is
readily leachable implies that secondary crack fillings and coatings,
normally an opaque material resembling hematite or limonite, may be
highly radioactive. In addition, zircon crystals commonly have many
inclusions, which may be comparatively radioactive. This paper hope-
fully will answer some of these questions as well as present some new
information concerning zircon morphology.
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PROCEDURE

Zircons were separated from 10 samples by means of the
standard procedures, heavy liquids (bromoform and methylene iodide)
and the Frantz isodynamic separator, Sample descriptions and locali~
ties are given in Table 1. The bentonites needed very little crushing,
for they usually could be disaggregated by elutriation in a large tank of



Table 1. Sample Localities.
Sample Rock Type Locality Apge Stratigraphy Reference
KIN-2 bentonite Kinnekule, Middle Chasmops Series, Bystrom-Asklund et 2_1_1.
Sweden Ordovician Caradocian (1961)

GH-12 bentonite Roane Co., Middie Chicamauga Ls. Hammil (1957)
Tenn. , USA Ordovician

JHT-8 bentounite Culberson Co, Permian Manzanita Member Terrell (1960)
Texas, USA Guadalupian Cherry Canyon Fm,

GH-26 bentonite Bedford Co., Middle Carters Ls., Wilson (1949)
Tenn., USA Ordovician Stones River Group

GH-14 bentonite Roane Co., Middle Chicamauga Ls. Hammill {(1957)
Tenn., USA Ordovician

LAU-1 granite near Dresden, Devonian {?) = -----------=-x Schurmann et al. (1956)
Saxony, E. Ger- Hoppe (1965)
many

PCR-65 amphibolite Mason Co., Precambrian Packsaddle Schist Ragland (1961)
Texas, USA

PCR-25C granite gneiss Llano Co., Precambrian Red Mountain Gneiss Boyer and Clabaugh
Texas, USA {1959)

PCR-1 quartzofeld- Mason Co., Precambrian Valley Spring Ragland (1961)

spathic gneiss Texas, USA Gneiss

FBS-1 beach sand Florida*, Recent = SSddzlacoliinn’ 0 seadddadaaass

U.S.A.

*exact location unknown

water. Samples PCR-65, PCR-25C and PCR-1 were passed througha
jaw crusher, pulverized to -100 mesh, and elutriated before the zircon
separation was performed. Normally 10-50 kilograms of bulk material
were processed to obtain one gram of pure zircon.

The problem of breakage of zircons during pulverizing is of
concern and should be mentioned., Larsen and Poldervaart (1957) in-
vestigated this problem carefully and concluded that there was very
little breakage during pulverizing. Such is not the case here, for the
relationship between the percent broken crystals and rocktype in Table
2 suggests that some crystals are broken during pulverizing. The well-
indurated granite and metamorphic rocks received the most vigorous
treatment during crushing and the percent broken zircon crystals from
these rocks varies from 35-46 percent, With the exception of JHT-8
(39 percent broken zircon crystals) the zircon suites from bentonites
contain only 12-18 percent broken crystals. The bentonites were sub-
jected to relatively mild treatment. Moreover, FBS-1, a beach sand,
was not pulverized at all and contains only 9 percent broken zircon
crystals.

The autoradiographs were prepared by impregnating several
hundred zircon crystals in nuclear track plates and pouring a liquid nu-
clear emulsion over each plate (Ragland, 1964). The plates were



Table 2,

Summarv Data for Zircon Suites.

Sample KIN-2 GH-12 JHT -8 GH-26 GH-14
Rock Type bentonites
ave, ¥length in mm. -1  ,099%,040 ,166%, 041 . 101, 026 . 134%, 054 . 110+, 050
ave, #breadth in mm.-b .035%,009 050,014 . 047+, 013 . 055%, 024 .058+.021
ave, #aize - Vib .058%,014 ,073%,014 .065%, 019 . 083%, 029 . 079%, 031
ave. *elongation

ratio-b/1 L41%,15 .44+, 16 ,48+.19 .45%,21 .54, 15
rounding ratiol 3.1 11 1.2 2.5 4.8
transparency ratio2 5.7 5.9 2.0 5.9 3.7
% broken crystals 16 18 39 12 14
avel x/em?/loec x1072 .75 .52 .73 .77 .81
Sample LAU-1 PCR-65 PCR-25C PCR-1 FBS-1
Rock Type granite amphibolite gneiss gneiss beach sand
ave. *length in mm. -1 .088%,038 ,111%,035 1174, 044 .119%, 044 .166%, 050
ave, #breadth in mm. -b . 040%,011 ,061%, 021 . 060+, 023 .080%, 029 . 101,033
ave, *size - V1b .057%,019 ,082+,023 .084%_026 .095% 035 .124%, 024
ave. ¥elongation

ratio - b/l .46%,16 .59%.15 .51%.19 L6719 .62%,21
rounding ratio! 4.0 0.1 19 0.8 0.9
transparency ratio 6.3 0.6 6.2 0.8 3.0
% broken crystals 41 39 35 46 9
:-we.'#cxlcmz/!recxlO'2 1.7 1.2 .45 .20 .49

*average quoted as arithmetic mean + one standard deviation, {x+s)
1 average quoted as median value - -
# defined as: euhedral crystals + subhedral crystals
2 rounded crystals
defined as: traasparent crystals + translucent crystals
{rosted crystals

allowed to expose for a maximum of 59 days before development. The
developed slides were placed under a polarizing microscope with a
mechanical stage and studied at X210 and X450 magnification. Tra-
verses were made across each slide until a minimum of 100 doubly
terminated individual crystals were studied per slide.

Several parameters were measured on each crystal, Length (1)
and breadth (bh) were measured only on doubly terminated, unbroken
crystals. From these measurements, size (the geometric mean,

Ib ), elongation ratio (b/1), and "volume" {bz‘xl} were calculated.
In order to report the o -activity in =/em®/sec x 10'2, surface area
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was calculated on the basis of three prism faces and the upper faces of
the pyramids. Alpha-tracks from the bottom faces cannot be seen so
these faces were not included in the measurement of surface area. It
was also noted whether the crystal was euhedral, subhedral or anhedral,
as well as transparent, translucent or opaque. All these data are sum-
marized in Table 2. Crystallographic form was recorded for euhedral
and subhedral crystals. Color, presence of outgrowth and/or over-
growths, as well as abundance and nature of inclusions were also noted.
The sites of the = -emitters were recorded on the basis of their parti-
tion between inclusions, crack fillings, surface coatings and randomly
distributed throughout the crystals.

COMPARISON OF ZIRCON SUITES

Of particular interest in this study is the comparison of zircon
suites from bentonites with those from other rock types. These GH zir-
con suites were used for absolute age dating by the U-Pb method (Adams
and Rogers, 1961) and one purpose of the present work was to deter-
mine whether or not the suite represented one population formed at one
time., Bentonites, representing volcanic ash that has been’ altered
largely to montmorillonite clay, are excellent stratigraphic marker
beds in that one unit may commonly extend over a wide geographic area
and yet be deposited over a very short interval of geologic time. In-
deed, a single bentonite may represent one ash fall and the zircons
within it a homogeneous population. Ragland (1964) compared the = -
activity of zircons from a bentonite with those from a placer sand, He
concluded that the zircons from the bentonite represent a single popula-
tion whereas those from the sand represent multiple populations. Lar-
sen and Poldervaart (1957) point out that the size and elongation of self-
nucleating, free-growing crystals is dependent upon their physico-
chemical environment, which probably is essentially uniform in a vol-
canic neck immediately before eruption. Thus it would be expected for:
zircons in a single ash fall to represent a single, homogeneous popula-
tion with respect to at least some measured variates.

In addition, zircon suites from bentonites may be compared with
those from multiple sources (FBS-1, the beach sand) and with those of
questionable origin (PCR-65, PCR-25C, and PCR-1, the metamorphic
rocks), Eckelmann and Kulp (1956), for example, concluded that the
Cranberry and Henderson 'granites' of North Carolina were meta-
sediments based upon their zircon morphologies, Many other studies
have discussed the use of zircon morphologies to distinguish between
metamorphic rocks and granites of sedimentary as opposed to igneous
origin. Saxena (1966) gives a comprehensive review of this literature,

The frequency distributions of the = -activities for each zircon
suite are shown in Figure 1 and the average =<-activity is given in Table
2. Only 'normal" zircons were considered; malacons, hyacinths and
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Figure 1. Histograms of « -activities.

metamict zircons were not included. Neither the averages nor the re-
lative dispersion of each distribution as shown in the histograms re-
veals differences between bentonite suites and those from other rock
types. With the exception of the zircons from GH-~12, averages for
bentonite suites are remarkably uniform, varying from 0, 73-0.81 «/
cm2/sec x 10°2, However, as a means of characterizing an individual
zircon suite and distinguishing it from other suites, the use of ®-activity
distributions was not successful in this study.

Arithmetic means and standard deviations for length, breadth,
size and elongation ratio for each sample are listed in Table 2. The
data for LAU-1 (Lausitz Granodiorite)are in good agreement with those
of Hoppe (1965) and Schurmann et al., (1956). These data are shown
graphically in Figure 2, which is a plot of average breadth vs. average
length fir each suite (represented by the openand closed cir_Cles)where
the slope of the lines represents the ratio of the respective standard
deviations (S,/S1). Each line is referred to as a reduced major axis.
The application of this concept to zircon studies is discussed in Alper
and Poldervaart (1957) and Larsen and Poldervaart (1957). A detailed
discussion of the method and calculations is given in Imbrie (1956).
The reduced major axis is envisioned as a trend of zircon growth in a
particular environment. Note that the majority of the lines would pass
reasonably close to the origin, indicating that the crystals are self-
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Figure 2, Reduced major axes for the ten zircon suites.

nucleating. The length of the lines are established by graphically eli-
minating the extreme 2 1/2 percent of the largest and smallest crystals.
If the slopes are similar and the points are close together, several
statistical tests have been developed to determine differences in zircon
suites. These tests are described in the references listed above.
Where the reduced major axes are quite different, as they are in Figure
2, visual observations will suffice. Some observations may be made
from the data presented in Table 2 and Figure 2:

1, Zircon crystalsfrom the bentonites and graniteare generally
more acicular, which is in general agreement with the fact that igneous
zircons are commonly more acicular than sedimentary zircons, as re-
ported in Poldervaart (1955, 1956).

2. Zircons from the beach sand are considerably larger than
those from other rocks, but are still well within the range for zircons
from common plutonic rocks Poldervaart, 1956).

3. Unbroken crystals from suites that containlarger grainsare
on the average more equant than those from suites of smaller grains.
Apparently the large, acicular crystals are broken during streamtrans-
port or crushing in the laboratory.

4, Dispersion as shown by length of reduced major axes is
generally less in the bentonite suites.

This last point was further developed by plotting histograms of
iyolumes' (1 x b®) of zircons from the entire suite, including broken
crystals. This measurement was found to be much more diagnostic
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than the usual measure of size \/E, which is commonly measured only
on doubly terminated, unbroken crystals., The larger the dispersion of
the volume or size histogram the greater is the chance for multiple
populations. These results are shown in Figure 3, which demonstrates
a marked difference in frequency distributions of volume. Compare for
example, FBS-1, the beach sand concentrate, with any of the bentonite
suites in the left column, Of the metamorphic suites, these data in-
dicate that PCR-1 contains several zircon populations and is of probable
sedimentary origin, and the others are of questionable origin,

The similarity of the zircon suites from the bentonites in aver-
age size, elongation and «xactivity suggest that they may represent one
homogeneous population; i.e., they all crystallized under similar phy-
sicochemical conditions. This hypothesis was tested by plotting cumu-
lative frequency distributions on probability scalesfor zircons from all
five bentonites., A variate may be normally distributed where the
cumulative frequency distribution of the raw data plots as a straight
line on probability paper. It is said to be lognormally distributed if the
cumulative frequency distribution of the logs of the raw data plot as a
straight line, The difference between the two distributions can be seen
by comparing Figure 4 and 5. Figure 4 indicates that the elongation
ratio data (b/1) are normally distributed, whereas Figure 5 indicates
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Figure 4. Plot of elongation ratio(b/1)for the five bentonites vs. cumu-
lative percent on arithmetic probability paper.

A 5 bentonites

Ot

o 2 20 40 60 80 o8 999
cumulative percent

Figure 5. Plot of size { ‘b ) for the five bentonites vs. cumulative
percent on log probability paper.

that the size data ( VIb ) are lognormally distributed. In the case of
the elongation ratio there is, for all practical purposes, a lower limit-
ing value of approximately 0.1 and an upper limiting value of 1.0. When
the mode of the distribution falls close to the lower limiting value,
which is true of the size data, the sample is positively skewed and ap-
proximates the lognormal distribution seen in Figure 5. A plot of the
volume data will also yield a lognormal distribution. As Vib is dimen-
sionally a linear measure, it should be lognormalfor growthin a homo-
geneous medium. Thus the zircon suites probably represent a homo-
geneous population with respect to size, If the mode is centrally
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Figure 6. Plot of <-activity for the five bentonites vs.
cumulative percent on log probability paper.

disposed between the lower and upper limiting values, as it is in the
case of the elongation ratio data, a normal distribution will result (Fig-
ure 4). It follows that if the mode is near the upper limiting value, the
sample will be negatively skewed. These relationships have been dis-
cussed in more detail in connection with the distribution of trace and
major elements in rocks by Rogers and Adams (1963). In any case, the
data suggest that the bentonite zircon samples were drawn from a homo-
geneous population, all zircons crystallizing under similar physico-
chemical conditions. Similar plots of size and elongation ratio from
the other samples do not yield straight lines.

The cumulative frequency distribution for the <-activity of
bentonite zircons (Figure 6) does not plot as a straight line on log pro-
bability or probability paper and requires a special explanation. One
explanation could be that the distribution is bi- or multimodal, but this
is probably not the case, as evidenced by the histograms in Figure 1.
These histograms show that the data are positively skewed, but not suf-
ficiently for a lognormal distribution. Thus the mode must be between
the "centrally disposed' value and the lower limiting value, suggesting
the fact that despite the lack of normality, the sample was drawn from
a homogeneous population, with respect to <«<-activity. Ahrens (1965)
found that uranium and thorium distributions in zircons from granitic
rocks approximate lognormality,
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During the coarse of the study, it became necessary to quantify
the degree of rounding and transparency of the zircon crystal. This
was done by calculating a ''rounding ratio' and ''transparency ratio' for
each suite. The rounding ratio is defined as the number of euhedral
and subhedral crystals divided by the number of well-rounded crystals;
the transparency ratio is defined as the number of transparent and
translucent crystals divided by the number of "frosted' crystals. Note
that the term opaque is avoided. Zircons that are described in the
literature as opaque are referred to as malacons or are metamict,
Metamict zircons and malacons are also highly radioactive compared
to "ordinary' zircons, which is not the case with the frosted zircons.
These frosted zircons are opaque or near-opaque, but this may be ac-
counted for by the diffusion of light from the frosted surface. Observed
with an oil immersion objective {total magnification, X1000), the surface
of these frosted crystals appear to be pitted and abraded or possibly
etched and corroded. Moreover, the euhedral crystals are generally
transparent; subhedral crystals are commonly translucent; and rounded
crystals are generally near-opaque. Metamict zircons and malacons
were rarely observed and will be discussed later in this paper, but were
not included in the calculation of rounding and transparency ratios.

Figure 7 is a plot of rounding ratio vs. transparency ratio for
the zircon suites and, as expected, a positive correlation is evident.
Note that the values for the bentonites and granite suites fall above
those for the beach sand and two of the metamorphic suites. The zir-
cons of the beach sand and two metamorphic rocks are ingeneral highly
rounded and abraded. They show evidence of considerable sedimentary
recycling and reworking. Zircons from sample PCR-25C are the most
euhedral, which suggests that this gneiss may be of igneous origin,
This interpretation is in keeping with the field relationships for the rock
from which PCR-25C was collected {Boyer and Clabaugh, 1959). Of
the two indices, the rounding index seems best to characterize the
suites, a value of greater than 1.0 indicating an igneous origin,

RADIOACTIVE SITES

Di_fferen(:t.s in electronegativities and size would indicate that
4+ and Th*" have restricted entry into the Zr * lattice sites in zir-
cons (Table 3). Both ions are roughly 20 percent largel than Zr** and
can be much more easily accommodated in Y t or Ce?? sites in xeno-
time or monazite, as evidenced by relatively high concentrations of
both U and Th in monazite and xenotime compared with zircon (Hurley
and Fairbairn, 1957).

Electronegativity values for both U4tand Th%" are the same and
are qu1te alm:lar I:o that for z+3t. Reliable ionization potential data
for U4 and 'I‘h are not available, but Taylor (1965) points out that
the melting point of ThOj is 3050°C as compared to 2176°C for UOyp,

11
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Table 3. Ionic radii and electronegativities for zirconium and some re-
lated elements..

ro& ek
zr4t 0.79 1.5
udt 0, 78 1.4
Thit 1. 02 1.4
udt 0.97 1.4
y4t 0.92 1.2
et 0. 94 1.1

*in angstroms; data taken from Ahrens (1952),
**%electronegativity values from Gordy and Thomas (1956).
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which suggests that the Th-O bond is considerably more ionic than the
U-O bond. Thus if one takes into account relative bond types, the aver-
age Th/U ratio in zircons of a magmatic series should decrease with
differentiation. Omn the other hand, Ahrens (1965) has suggested that
u4t may be preferentially accepted because its ioniec radius is closer
to that of Zr*T., He cites as evidence the fact that the Th/U ratio is
generally much smaller in the zircons than in their host rocks. This
reasoning would imply that the Th/U ratio might be higher in zircons
from more fractionated igneous rocks. The average Th/U ratic for
zircons from granites as reported in Hurley and Fairbairn (1957) is
0.4, whereas the ratio for pegmatitic zircons is 1.0. Assuming that
pegmatites are generally late-stage fractionates of granites, it would
seem that small differences in ionic size control the preferential entry
of U4+, rather than differences in bonding,.

The above arguments hold only if Th** and U4t are competing
for lattice sites in the zircons. The fact that at least limited substitu-
tion does exist is indicated by the data in Table 4, showing the distri-
bution of radioactivity within the zircon suites. In every case over 90
percent of the « -tracks were observed to project randomly from the
crystals, The « -track density over the crystals was quite uniform.
Only ih sample PCR-65 were an appreciable number (10,2 percent)
emitting from surface coatings and the inclusions were no more radio-
active than the surrounding zircon crystals. Silver and Deutsch (1963)
made similar observations when they found that little of the o -activity
seems to be localized in an individual zircon ecrystal. It would appear,
therefore, that despite their relatively large ionic radii, U4t and Th*t
can substitute for Zr4t in crystal lattices. No local concentrations of
« -activity were seen within a single crystal, suggesting that occlusion
did not take place to an appreciable degree.

Another explanation of the higher Th/U ratios in zircons from
pegmatites involves the oxidation of U* to its more soluble form
(UOZ)Z+ and its subsequent leaching from the crystal lattice. Such a
process may take place owing to oxidative processes believed to be
operative during the pegmatitic stage of magmatism (Rogers and Rag-
land, 1961;Ragland et al., 1967), Thus the relatively high Th/U ratios
in pegmatitic zircons_co_mpa red with granitic zircons may be caused by
removal of U during the pegmatitic stage. This U eventually may find
its way into secondary minerals or readily leachable material along
grain boundaries.

One interesting observation made during the course of the study
was that in several samples a relatively few highly radioactive grains
accounted for a disproportionally large amount of the «-activity. Silver
and Deutsch (1963) also noted this when they found that less than one
percent uranothorite grains in a zircon suite from the Johnny Lyon
Granodiorite, Arizovna, can account for more than 50 percent of the
radioactivity. The pertinent data are given in Table 4. For example,
in sample PCR-1 normal zircons accounted for 86 percent of the suite

13



Table 4. Distribution of Radioactivity Within the Zircons.

% distribution of ®-activity % total
within zircons o« -activity %
attributable | zircons*
x'lline opaque opaque to in

Sample random inclusions inclusions coatings zircon* suite
KIN-2 94.9 1.9 2.1 1.1 100 100
GH-12 100 —_— --- - 100 100
JHT-8  92.6 1.4 1.6 4.4 78 99
GH-26 93.3 3.7 3.0 - 65 98
GH-14 100 - -— —— 100 100
LAU-1 99.4 - 0.6 -—- 27 79
PCR-65 89.6 - 0.2 10.2 ) 96
PCR-25C 97.9 1.5 0.7 - 49 95
PCR-1 98.3 — 1.7 - 8 86
FBS-1 98. 7 0.2 0.3 0.8 44 98

*excluding malacon and metamict zircons

but only 8 percent of the radioactivity.

Several possibilities exist as to the nature of these highly radio-
active grains. A few of them (less than 10 percent) are apparently
zircons. There are three known varieties of zircons, normal or high
zircon, hyacinth and malacon or low =zircon. Normal zircons are
characterized by relatively low radioactivities, high indices of refrac-
tion, high birefringences and high specific gravities., They are generally
colorless, transparent and euhedral. Malacons are characterized by
relatively high radioactivities, low indices of refraction, low bire-
fringences and low specific gravities, They are commonly brown to
black in color, translucent to opaque and rounded. Hyacinths are in-
termediate between the other two varieties of zircons in every respect
and are generally pink to purple in color. See Hutton (1950) and Morgan
and Auer (1941) for a detailed discussion of the three varieties of zir-
cons. In addition, metamict zircons, those whose crystalline lattices
have been destroyed by radiation damage and are now isotropic, are
very highly radioactive. Hyacinths, malacons or metamict zircons are
not observed in the bentonite suites. A few of the highly radioactive
grains in sample PCR-1 are apparently malacons and metamict zircons,

The majority of the highly radioactive grains were not zircons
but monazite, which was not separated from the zircons with the mag-
netic separator and heavy liquids. The identification was confirmed by
mounting individual grains in an x-ray diffraction powder camera, ex-
posing the film for 12-24 hours, and identifying the spots on the develop-
ed film. Approximately 20 grains were picked randomly and individually
analyzed from several suites, and in each case the crystal was identi-
fied as monazite.
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CRYSTAL HABIT

Hutton (1951) reports that the most common crystal habit for
zircon is the development of second-order prisms a(l110) terminated by
first-order pyramids p(111l), with or without third-order pyramidal
faces. The prism m(110) was reported generally to be present but was
rarely dominant. Less common are the development of second-order
prisms with three orders of pyramids. The most simple habit of one
prism and a pyramid of the same order, i. e., p(101) a(100) is report-
edly uncommon,

The crystal habits of zircons observed in this study can be divid-
ed into three general groups, based upon their relative complexities.
In order of their increasing complexity, typical examples of each group
are: Type I, p(101) a(100); Type II, p(101) m(110) a(100); and Type III,
p(101) m(110) a(100) x(211). These examples are illustrated in Figure
8. The drawings were taken from Berry and Mason (1959). Relative
percentages of each type are given in Table 5 for those suites that con-
tained an appreciably number of euhedral crystals.

With the exception of JHT-8 and PCR-25C, the simple habit of
Type I is uncommon, which is in agreement with the observations of
Hutton (1951). The most complex habit of Type IIl predominates. The
data for LAU-1 are in good agreement with the conclusions of Hoppe
(1965) concerning crystal morphology of the zircons from the Lausitz
Granodiorite.

Figure 8. Typical examples
of zircon crystals from
Types I, II, and III. Draw-
ings from Berry and Mason

(1959).
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Table 5. Relative Percentages of the Three Types of Crystals.

Sample I II 111
GH-12 0 19 81
GH-14 4 17 79
JHT-8 21 58 21
GH-26 8 27 65
KIN-2 5 45 50
PCR-25C 26 63 11
LAU-1 0 32 68

Table 6. Means and Standard Deviations of Volumes From Crystals of
Types II and III,

vol. x10-4 rm’n?J = 1xbé

Type 1I Type III

x+s X +s
PCR-25C 5.4+ 1,6 2.2+0.9
GH-12 4,33 3.0 2.2 1.2
GH-14 7.2+ 6.0 5.0% 4.4
JHT-8 2.7+ 1.7 1.7+ 1.0
LAU-1 1.5+ 1.2 1.1 +1.0
KIN-2 1.5+ 0.9 1.2+ 0.6
GH-26 5.314.3 4.5+ 3.6

During the course of the research it became apparent that there
is a relationship between crystal habit and size of the crystals. The
pertinent data are given in Table 6, which compares average volumes
of Type II and Type III crystal habits for seven suites, Although the
standard deviations are large in most cases, the arithmetic means are
invariably larger for Type II crystals, Application of Student's t-test
indicates a significant difference of means for zircons of all suites at
the 99 percent confidence level.

The explanation for this observation may be found in an alter-
native expression of the well-known law of Bravais: '"The rate of crystal
growth in any lattice direction is proportional to the point densityin
that direction' (Berry and Mason, 1959, p, 48). The greatest point
density will be in lattice planes with lowest Miller indices and crystal
growth will be most rapid in those directions. Thus as a crystal grows,
crystal faces with high Miller indices will tend to disappear and faces
with low Miller indices will tend to enlarge. Omne would expect, there-
fore, crystals of Type III, containing some faces with relatively high
Miller indices, to be smaller than crystals of Type II. This relation-
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ship is in agreement with the data in Table 6. Those of Type I should
be largest of all but insufficient data are available for all but one suite,
In sample PCR-25C the average volume of Type I crystals is 5.4 + 3.0
mm?3 x 1074, equal to that of Type IL B

CONCLUSIONS

1. Parameters that apparently best characterize a zircon suite
and enable it to be distinguished from other suites are elongation ratio,
rounding ratio and dispersion of volume histograms.

2. Zircons from the five bentonites are apparently from a homo-
geneous population with respect to size, elongation and «-activity, in-
dicating that they crystallized under similar physicochemical condi-
tions.

3. Apparently U4t and Tht occupy regular lattice positions in
zircon.

4, Relatively high Th/U ratios in pegmatitic zircons compared
with granitic zircons may be explained by: (1) prelerential entry of utt
into the zircon lattice during magmatic fractionation; and (2) oxidation
of U4'Jr to (UOZ)Z+ and its subsequent leaching during the pegmatitic
stage of magmatism.,

5. A few grains in some of the suites that were observed to be
considerably more radioactive than normal zircons are generally mona-
zite and rarely malacon or metamict zircons.

6. Zircons with relatively complex crystal habits (i.e., they
have some faces with comparatively high Miller indices) are in general
smaller than those with less complex crystal habits., This observation
can be explained by an alternative expression of the law of Bravais.
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GEOLOGY OF THE SOUTHWESTERN BALD MOUNTAINS IN THE

BLUE RIDGE PROVINCE OF TENNESSEE

By

Denny N, Bearce
Department of Geology
Birmingham-Southern College
Birmingham, Alabama

ABSTRACT

The southwestern Bald Mountains in eastern Tennessee are part
of the western margin of the Blue Ridge Province in the southern Appa-
lachians.

Two major thrust sheets occur in the southwestern Bald Moun-
tains: the Buffalo Mountain thrust sheet and the Del Rio thrust sheet.
Both thrust sheets are composed largely of clastic sedimentary rocks
of the Precambrian Ocoece Series and the Lower Cambrian Chilhowee
Group.

Synclines in both the Buffalo Mountain and Del Rio thrust sheets
indicate post-fault folding of the thrust sheets. Imbricate thrust fault-
ing developed during the folding of the larger thrust sheets. A greater
intensity of folding is expressed at the surface in the Del Rio thrust
sheet than in the overlying Buffalo Mountain thrust sheet.

Small windows in the Del Rio thrust sheet indicate that the im-
bricate thrust faults within the sheet become subhorizontalat a relative-
ly shallow depth and are folded. The Del Rio thrust sheet probably
thins northeastward by wedging out from the base upward beneath the
Buffalo Mountain thrust sheet. Possibly, only the lower portion of the
Del Rio thrust sheet, the most deformed portion nearest the sole fault
of the thrust sheet, remains; the upper portion may have been bevelled
by the over-riding Buffalo Mountain thrust sheet and subsequently fur-
ther reduced by erosion. Deformational intensity increases near the
southwest end of the Buffalo Mountain thrust sheet where it wedges out
over the Del Rio thrust sheet. The increased degree of deformation in
the thinned southwest end of the Buffalo Mountain thrust sheet and the
even greater deformation in the northeasternmost exposed portion of
the Del Rio thrust sheet suggest that the northeastern exposed portion
of the Del Rio thrust sheet is a surface representation of the structural
nature of the Buffalo Mountain thrust sheet at depth,

A more or less continuous synclinal trend with minor interven-
ing warps is postulated to extend from the synclinorium, between the
Holston Mountain and Iron Mountain thrust faults of northeasteramost
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Tennessee, southwestward to the southwest end of the Buffalo Mountain
thrust sheet where it is expressed by the Paint Creek and Greene Moun-
tain synclines. The northeast-plunging nose of the Paint Creek syncline
is reflected in the curved trace of the Buffalo Mountain thrust fault,
which bounds both the southwest end of the Buffalo Mountainthrust sheet
and the east side of the Hot Springs window in North Carolina to the
southeast. Late stage folding of the Buffalo Mountain thrust sheet per-
pendicular to the direction of movement produced the synclines.

INTRODUCTION

The southwestern Bald Mountains of the Unaka Range form a
portion of the western margin of the Blue Ridge Province in the Southern
Appalachians (Figure 1). The Bald Mountains extend from the north-
eastern end of the Great Smoky Mountains northeastward about 50 miles
along the Tennessee-North Carolina border. The southwestern Bald
Mountains considered here (Figure 1) extend from Lanceville, Cocke
County, Tennessee, northeastward through Greene County, Tennessee,
to Big Butt Mountain, Tennessee, an area roughly 21 miles long and 3
miles wide (Plate 1),

Exposed rocks in the southwestern Bald Mountains belong main-
ly to the Ocoee Series and Chilhowee Group (Safford 1869, pp. 113-203)
of late Precambrian and early Cambrian age respectively. The sequence
consists of shale, siltstone, sandstone and conglomerate and includes
minor intervals of dolomite and limestone. Although basalt flows are
present in the Chilhowee Group immediately northeast, mno igneous
rocks have been observed in the southwestern Bald Mountains. The
sedimentary rocks have in part been metamorphosed to quartzite and
slate,

Rocks within the Bald Mountains have beenthrust northwestward
over Ordovician limestone and shale of the Valley and Ridge Province
along the Holston Mountain, Buffalo Mountain, and Meadow Creek Moun-
tain thrust faults (Figure 2). In the southwestern Bald Mountains two
major thrust sheets are recognized: the Buffalo Mountain thrust sheet,
bounded by the Buffalo Mountain thrust fault; and the Del Rio thrust
sheet, bounded by the Meadow Creek Mountain thrust fault (Figure 2).
The Del Rio thrust sheet underlies the Buffalo Mountain thrust sheet.
Minor thrust faults within both thrust sheets cause numerous gaps and
repetitions in the stratigraphic column,
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sequence of clastic sedimentary rocks with minor intervals of lime-
stone and dolomite, and with no known fossils, The Ocoee Series is of
limited extent in the Unaka Mountains of eastern Tennessee, the western
Carolinas, Georgia, and possibly Alabama. On the southeast side of
the Unakas the Ocoee restsnonconformably onolder granites and gneiss-
es. In the northwestern portion of the Unakas the Ocoee is overlain
conformably or paraconformably by the basal formation of the Chilhowee
Group.

The Ocoee Series has been assigned a late Precambrian age
(King, et al., 1958, p. 965) and has been classified by the U, S. Geo-
1ogical§u;/'ey as a provincial series (King, et al., 1958, p. 951), ana-
logous to the Keweenawan, Beltian, Grand Cta_r-lym, and others.

Northeastward from the Great Smoky Mountains the Ocoee Se-
ries thins abruptly from its base upward; Ococe sediments inthe south-
western Bald Mountains are thought to correlate mainly with youngest
Ocoee sediments, the Walden Creek Group, in the Smokies (King, 1949,
p. 628),

A two-fold subdivision of the Ocoee Series into the Snowbird
Formation and Sandsuck Formation, in ascending order, was used by
the writer in mapping the southwestern Bald Mountains. These mapping
units were chosen in preference to the units used in mapping portions of
the Great Smoky Mountains (King, 1964) for two reasons. First, the
primary purpose of the present investigation was to fill a gap between
previously mapped areas in northeast and east Tennessee. In the pre-
viously mapped areas bordering the present area of investigation onthe
northeast (Shekarchi, 1959, p. 62-74) and on the southwest {Ferguson,
1951, p. 13-17) the Snowbird and Sandsuck Formations were used as
mapping units, By using the same units the writer could more easily
correlate, compare, and note stratigraphictrends betweenthese adjoin-
ing areas. Secondly, such a two-fold division is logical in the south-
western Bald Mountains., The preponderance of feldspathic quartzite
and arkose in the Snowbird, and the preponderance of slate and siltstone
with lenses of dolomite and limestone in the Sandsuck, serve to differ-
entiate the two formations in the area of investigation.

Snowbird Formation., The Snowbird Formation (Keith, 1904, p.
5) in the southwestern Bald Mountains consists of approximately 4, 500
feet of greenish grey to light brown, massively-bedded arkose and light
brown, medium- to massively-bedded, feldspathic quartzite with inter-
vals of grey to black shale and slate (Figure 3). Quartzitesand arkoses
within the formation support knobs and ridges such as Big Butt, Black
Stack Cliff, White Rock Cliff, Little Bald Mountain, Camp Creek Bald,
and Rich Mountain (Plate 1).

The Snowbird Formation is overlain conformably by shale and
siltstone of the Sandsuck Formation., The base of the Snowbird Forma-
tion is not exposed in the area shown in Plate 1.

Two facies of the Snowbird are found along strike in the south-
western Bald Mountains. The southwestern facies occupies the
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Figure 3. Columnar sections, Southwestern Bald Mountains, Tennes-

sce.

southwest end of the Buffalo Mountain thrust sheet (Plate 1). The north-
eastern facies is found in a different thrust block within the Buffalo
Mountain thrust sheet northeast of State Highway 70 (Plate 1). The
northeastern facies is typified by units 50 to 1,000 feet thick of light
brown to light grey, medium- to massively-bedded, vitreous in part,
fine- to coarse-grained quartzite containing intervals of granular arko-
sic quartzite, and units approximately 300 feet thick of dark greenish-
grey, massively-bedded, fine- to medium-grained, spheroidally weath-
ering, arkosic sandstone containing intervals of platy to thin-bedded
siltstone and shale (Figure 3, Ocoee Series, Camp Creek Bald). The
southwestern facies is composed of pale greenish-grey and greenish-
brown, massively-bedded (beds as much as 20 feet thick), fine- to
coarse-grained arkose with intervals of conglomeratic arkose up to
five feet thick, and grey to black, laminated shale and siltstone (Figure
3, Ocoee Series, Paint Creek). No distinctive lithology can be traced
from one facies into the other, and thrust faulting prevents a compari-
son of thickness between the two facies (Figure 3).

Sandsuck Formation. The Sandsuck Formation (Keith, 1895, p.
3) in the southwestern Bald Mountains comprises 2,500 feet of dark-
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green, dark- to light-grey, black, and dark-red pyritic shale and silt-
stone; light-brown to grey, coarse-grained to conglomeratic, thick-
bedded arkose; and grey, sandy, thick-bedded, pyritic, dolomite (Fig-
ure 3). The shale and siltstone in part have been metamorphosed to
slate. The Sandsuck Formation in the southwestern Bald Mountains is
apparently overlain conformably by arkosic conglomerates of the Unicoi
Formation,

Chilhowee Group

General, The Chilhowee Group (Safford, 1869, p. 198-203)
(Keith, 1903, p. 4-5) is a sequence of clastic sedimentary rocks of
variable thickness, equivalents of which are found in the Blue Ridge
Province from Pennsylvania to Georgia. A three-fold subdivision of
the Chilhowee Group (Keith, 1903) is used in northeastern Tennessee
including the southwestern Bald Mountains, but a five-fold subdivision
(Keith, 1905) is used in the Great Smoky Mountains to the southwest
(Table 1). The occurrence of Indiana tennesseensis in the Murray Slate
(Laurence and Palmer, 1963, p, 53-54)and of Scolithus linearis in beds
as low as the Unicoi Formation (King et al., 1944, p. 29) have caused
the Chilhowee Group to be assigned to the Cambrian,

Table 1. Correlation of Chilhowee Group on Chilhowee Mountain with
Northeastern Equivalents as Proposed by King (1964, p., 71).

Chilhowee Mountain Northeastern Equivalents

Hesse Quartzite

Murray Slate Erwin Formation

— et Tt e e

Nebo Quartzite
Nicols Slate Hampton Formation

Cochran Conglomerate Unicoi Formation

The Chilhowee Group of the southwestern Bald Mountains changes
in character upward from coarse-grained arkose in the Unicoi to clean,
fine-grained quartzites and siltstones in the Erwin. It appearsthat with
passage of time the provenance area for Chilhowee sediment either
shifted or was reduced to low relief.

Unicoi Formation. The Unicoi Formation (Keith, 1903, p. 4-5)
of the southwestern Bald Mountains consists of about 3,000 feet of light-
grey, medium- to thick-bedded, medium- to coarse-grained, feldspathic
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quartzite and arkose, brown to greenish-grey, medium- to thick-bedded,
fine-grained, pyritic sandstone, and minor intervals of dark-grey,
piaty siltstone (Figure 3). The lower half of the formation becomes in-
creasingly more arkosic and granular toward the base, and generally
ten to seventy feet of arkosic conglomerate with white quartz and yellow
feldspar pebbles forms the lowermost beds of the formation.

The Unicoi is overlain conformably by shale and siltstone of the
Hampton Formation. It is distinguished from the underlying Sandsuck
Formation by the preponderance of shale and siltstone, and by the oc-
currence of dolomite beds or dolomite cement in arkosic intervals,
within the Sandsuck.

Hampton Formation. The Hampton Formation (Keith, 1903, p.
5) in the southwestern Bald Mountains is composed of about 2,000 feet
of shale, siltstone, and sandstone (Figure 3). The sandstone is mainly
dark-brown to grey, as are the shale and siltstone which form the
major portion of the formation. Typical Hampton sandstone is fine-
grained, massively-bedded and pyritic, and weathers to smooth, round-
ed ledges. Intervals of arkose and feldspathic quartzite similar to Uni-
coi lithology are present in the Hampton, but they constitute only a
small percentage of the formation. The shale and siltstone of the
Hampton are identical to the shale and siltstone in the major portion of
the Erwin Formation. However, the Hampton contains no ferruginous
quartzite or tan vitreous quartzite, the two lithologies which are dis~
tinctive of the Erwin in the southwestern Bald Mountains. Thus, the
Hampton Formation is best delimited locally in terms of the more dis-
tinctive beds of the Unicoi and Erwin formations below and above it.

The Hampton Formation has essentially the same lithologic
character in both the Buffalo Mountain and Del Rio thrust sheets. In
the Del Rio sheet, however, a laterally presistent interval of feldspathic
quartzite is present in the middle portion of the formation and is mapp-
ed as the Hampton Quartzite Member (Plate 1). The lower Hampton,
present and used as a mapping unit (Ferguson, 1951, p. 28) in other
portions of the Del Rio thrust sheet, is not exposed in the portion of the
Del Rio thrust sheet mapped by the writer.

Erwin Formation. The Erwin Formation (Keith, 1903, p. 5) in
the southwestern Bald Mountains is a 2,500 foot thick sequence of
bluish-grey, finely-laminated siltstone and shale and light-gray, thin-
bedded, fine-grained, pyritic sandstone with distinctive intervals of
dark-red, medium- to massively-bedded, fine- to coarse-grained,
ferruginous gquartzite and light-brown, vitreous, massively - bedded
quartzite (Figure 3). The latter two lithologies serve to differentiate
the Erwin from the Hampton. The writer has mapped the base of the
Erwin as the base of the lowest ferruginous quartzite in the south-

western Bald Mountains.
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TECTONICS
Principal Structural Features of the Unaka Range in
Northeastern Tennessee and Western North Carolina

Major thrust sheets, The dominant structural features of the
Unaka Range are thrust faults which dip generally 30 degrees to 40 de-
grees toward the southeast. Because of shallow dip and great topo-
graphic relief the faults are commonly sinuous intrace and form branch-
ing or anastomosing patterns. The thrust planes generally cut across
stratigraphic horizons at low angles.

The Holston Mountain thrust fault (Stose and Stose, 1944, p.
380) may be traced along the front of the Unaka Range for tens of miles
in northeast Tenunessee (Figure 2). It is a low-angle, southeast-dipping
fault along which Precambrian and lower Cambrian rocks have moved
relatively northwest over Ordovician rocks of the Valley and Ridge Pro-
vince. The Holston Mountain fault is replaced southwestward as the
boundary of the Blue Ridge Province, by the Buffalo Mountain fault
which in turn is replaced further southwest by the Meadow Creek Moun-
tain fault (Figure 2).

The Buffalo Mountain overthrust (Keith, 1907, p. 8-9) in the
northeast part of the Bald Mountains bounds a tongue-shaped body of
rocks called the Buffalo Mountain thrust sheet (Figure 2) Ordway, 1959,
p. 623). The overthrust dips gently to the southeast on the northwest
side and almost vertically on the southeast side of the thrust sheet
(Rodgers, 1953, p. 142). On the southeast side of the tongue the Buf-
falo Mountain fault trace merges with the Rector Branch fault and for a
small distance borders the southwest end of the Mountain City window
(Figure 2). The Buffalo Mountain thrust fault forms the northwest
boundary of the Bald Mountains as far southwest as Hayesville (Plate 1),
where it arches back into the mountains.

At Hayesville the Buifalo Mountain fault is replaced as the west
boundary fault of the Blue Ridge Province by the Meadow Creek Moun-
tain thrust fault, The Meadow Creek Mountain and Mine Ridge thrust
faults (Figure 2) delimit the Del Rio thrust sheet (Ferguson and Jewell,
1951, p. 40-44). The two faults may be separate exposures of a single
lolded fault. The Del Rio thrust sheet is cut into blocks by lesser, ap-
parently steeper thrust faults, and contains the same formations as the
Buffalo Mountain thrust sheet which overlies it. The Del Rio thrust
sheet is in part overridden by the Buffalo Mouuntain thrust sheet and
probably wedzges out northeastward beneath the Buffalo Mountain thrust
sheet,

Folds. King et al. (1944, p, 11), in describing the geology of
northeast Tennessee;ﬂbe-ﬁeved thatthrust sheets had moved many miles
northwest along low-angle thrust faults, He postulated that during or
shortly after thrusting the thrust sheets were folded broadly into a
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synclinorium to the northwest, between the Holston Mountain and Iron
Mountain thrust faults, and an anticlinorium to the southeast, between
the Iron Mountain and Stone Mountain thrust faults (Figure 2). King
et al, (1944, p. 12) reported that the highest and youngest thrust sheet
of the series of thrust sheets in northeastern Tennessee, the Buffalo
Mountain thrust sheet, lies within the trend of the synclinorium (Figure
2).

The Rich Mountain syncline (Shekarchi, 1959) lies in the same
trend as the synclinorium described by King between the Holston Moun-
tain and Iron Mountain thrust faults (Figure 2). The smaller Greene
Mountain and Paint Creek synclines southwest of the Rich Mountain syn-
cline lie in the same trend as the RichMountain syncline, Thus, King's
synclinorium appears to extend southwestward from northeasternmost
Tennessee to the southwest end of the Buffalo Mountain thrust sheet.

Windows, The great horizontal displacement of thrust sheets
of the Blue Ridge province is proven by windows that lie as much as 12
miles southeast of the edge of the thrust sheets.

The Mountain City window lies ou the anticlinorium trend bet-
ween the Iron Mountain and Stone Mountain thrust faults (Figure 2).
The window exposes Precambrian granites and gneisses and lower Cam-
brian sedimentary rocks of the Chilhowee Group, Shady Formation and
Rome Formation. Rocks within the window are cut by many thrusts
dipping both southeast and northwest.

The Hot Springs window is encompassed by four different thrust
faults. Rocks within the window range in age from the Cambrian Shady
Formation to the Precambrian Snowbird Formation. The window trends
east-west in contrast to the northeast alignment of most Appalachian
structures (Figure 2). Oriel (1949, p. 156) reported a southwest-
plunging anticline within the window. He proposed that the anticline
formed within and after emplacement of an early thrust sheet, the
Pulaski thrust sheet, which underlies the Buffalo Mountain and Del Rio
thrust sheets.

Structural Features of the Buffalo Mountain and Del Rio
Thrust Sheets Within the Southwestern Bald Mountains

Thrust faults. The Buffalo Mountain thrust fault is a low-angle
fault dipping at the surface from 4 to 35 degrees to the southeast and
flattening at depth (Figure 4), Stratigraphic relationships between
hanging wall and footwall vary along the Buffalo Mountain thrust fault,
The Snowbird rests on Cambrian Shady Dolomite at the southwest end
of the thrust sheet and the Sandsuck and Unicoi rest onOrdovician Sevier
Shale and Knox Limestone at the northeast end of the area of study.
Never the less, stratigraphic displacement appears to be consistently
of a magnitude of about 10, 000 feet along the length of the fault. The
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best evidence for the magnitude of horizontal movement along the Buf-
falo Mountain thrust fault is provided by the Hot Springs window. The
minimum magnitude of horizontal movement, from the northwest bor-
der of the Buffalo Mountain thrust sheet to the southeast side of the Hot
Springs window, is about 10 miles.

The Buffalo Mountain thrust fault cuts across beds in the Buffalo
Mountain thrust sheet becauss bedding consistently dips more steeply
than the fault (Figure 4, Sec. A-A'), The fault cuts successively older
hangingwall strata toward the northwest margin of the thrust sheet and
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southwestward along the trace of the fault.

The Del Rio thrust sheet, bounded by the Meadow Creek Moun-
tain thrust fault, protrudes from beneath the Buffalo Mountain thrust
sheet at its southwest end. Arkose of the Sandsuck Formation at the
southwest end of the Buffalo Mountain thrust sheet is faulted onto a thin
wedge of Shady Dolomite which in turn is carried by the Meadow Creek
Muuntain fault onto Sevier Shale of the Pulaski thrust sheet (Plate 1).
Northeast from Hayesville, Sandsuck beds of the Buffalo Mountain
thrust sheet lie directly on Sevier Shale of the Pulaski thrust sheet
(Plate 1). The intermediate thin wedge of Shady Dolomite marks the
northeasternmost exposure of the Del Rio thrust sheet that probably
wedges out from its base upward beneath the Buffalo Mountain thrust
sheet (Figure 5). The Buffalo Mountain thrust fault, replaced at the
mountain front at Hayesville by the Meadow Creek Mountain thrust
fault, assumes a more south-southwesterly course into the mountains
across the Del Rio thrust sheet (Plate 1) and continues into NorthCaro-
lina.

Numerous lesser thrust faults are found within the Buffalo Moun-
tain and Del Rio thrust sheets, At the surface the lesser faults of the
Buffalo Mountain thrust sheet generally dip about 45 degrees to the
southeast (Figure 4). Thrust faults within the Del Rio thrust sheet are
much more sinuous in trace than are those within the Buffalo Mountain
thrust sheet, probably because the faultplanes within the Del Rio thrust
sheet do not dip so steeply as those within the Buffalo Mountain thrust
sheet. Instead, fault planes within the Del Rio thrust sheet appear to
form undulating surfaces at relatively shallow depth (Figure 4, Sections
E-E' and F-F').

Stratigraphic displacement ranges to a maximum of about 3,500
feet for all but the southeasternmost fault of the Buffalo Mountain thrust
sheet, slightly northwest of and roughly parallel to the Tennessee-North
Carolina state line (Plate 1), Along the southeasternmost thrust fault
of the Buffalo Mountain thrust sheet, quartzites and shales of the Snow-
bird Formation are faulted onto rocks as youngas the ErwinFormation,
The fault may be another imbricate thrust within the Buffalo Mountain
thrust sheet; however, lack of resemblance of rocks in the hangingwall
of the southeasternmost thrust fault to rocks elsewhere within the Buf-
falo Mountain thrust sheet may indicate that this is a separate major
thrust sheet, higher and later than the Buffalo Mountain thrust sheet.

Synclines, The southwest nose of a northeast-plunging syncline,
referred to herein as the Greene Mountain syncline (Bearce, 1966) oc-
curs in the Buffalo Mountain thrust sheet (Plate 1 and Figure 4, Sec.
B-B'). The northwest flank of the syncline, containing beds as young
as the Erwin Formation, continues northeast beyond the northeast end
of the area mapped by the writer. The southeast flank of the Greene
Mountain syncline is concealed beneath higher thrust blocks from the
upper Paint Creek headwaters northeastward (Plate 1). The southeast
flank appears to project northeastward under the Rich Mountain syncline
(Figure 2).
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At the southwest end of the Buffalo Mountain thrust sheet is the
northeast-plunging nose of the Paint Creek syncline (Bearce, 1966), a
broad, faulted, and folded symncline containing beds at least as old as
Snowbird and as young as the Unicoi Formation., One of the minor
thrust faults in the Buffalo Mountain thrust sheet separatesa large por-
tion of the Paint Creek syncline from the Greene Mountain syncline.

The bedding attitude of the southwest nose of the Paint Creek
syncline directly controls the map configuration of the eroded southwest
end of the Buffalo Mountain thrust sheet; bedding strike is in part
parallel to strike of the southwesternmosi 2 miles of the Buffalo Moun-
tain fault shown on Plate 1,

Minor shallow synclines within the Del Rio thrust sheet have
axial trends that are inconsistent with the northeast trend of synclines
in the Buffalo Mountain thrust sheet. Strata in the Del Rio thrust sheet
are more intensely folded than strata of the Buffalo Mountain thrust
sheet,

Windows. Two small windows, exposing rocks of the Erwin
Formatﬂ)n_m_completely surrounded by quartzite and shale of the
middle portion of the Hampton Formation, are found in the Del Rio
thrust sheet in the lower Paint Creck-French Broad River area (Plate
1). The northernmost window, confined to the bottom of a deep stream
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valley cut into Hampton beds, is approximately 3, 200 feet long and is
estimated to be 900 feet wide at its mid-point (Figure 4, Sec. E-E').
Rocks within the window consist of typical Erwin quartzites that dip 20
degrees to 35 degrees to the south. The second window lies
on the south side of the French Broad River and is estimated to be a-
bout 450 feet in diameter. Rocks in the window are typical Erwin For-
mation, and the rocks surrounding the window are middle and upper
Hampton (Figure 4, Sec. F-F'), Although exposures are few, the ano-
malous east dip of the quartzite within the window in contrast to the
northwest dip of the surrounding Hampton beds, and the topographic
location, at the bottom of a draw cut into Hampton beds, demonstrate a
window.

Deformation within thrust blocks. In the portion of the Buffalo
Mountain thrust sheet under consideration surficial deformation in-
creases southwestward, reaching a maximum in the Paint Creek syn-
cline, From the northeastern border of Plate 1 southwestward to the
southwest nose of the Greene Mountain syncline, bedding attitudes re-~
flect only broad warping of the blocks forming the Buffalo Mountain
thrust sheet (Figure 4, Sections A-A' and B-B'). Southwest of the
Greene Mountain syncline pronounced changes in degree of dip and re-
versals in direction of dip indicate more intense folding of the thrust
blocks of the Buffalo Mountain thrust sheet (Figure 4, Sections C-C!'
and D-D').

Surficial evidence of increasing folding intensity southwestward
in the Ruffalo Mountain thrust sheet is accompanied by an increase in
the development of fracture cleavage. Cleavage is absent northeast of
the southwest nose of the Greene Mountain syncline. Cleavage is con-
fined to Ocoee strata and reaches a maximum development in the Paint
Creek syncline. The majority of cleavage attitudes have dips averag-
ing from 50 to 75 degrees to the southeast and strikes averaging from
N 10° E to N 30° E.

The thickness of strata overlying the Buffalo Mountain thrust
fault in the Paint Creek syncline atthe southwest end of the Buffalo
Mountain thrust sheet is apparently less than it is further to the north-
east in the thrust sheet. Southwestward thinning of the thrust sheet is
due in part to erosion. Surface elevations along streams in the Buffalo
Mountain thrust sheet from State Highway 70 northeastward are mostly
above +2, 000 feet; southwest of State Highway 70 they are generally bet-
ween +1, 500 feet and +2, 000 feet (Plate 1). The Buffalo Mountain fault
is conjectured to flatten at depth at an elevationbetween -1,000 feet and
-2, 000 feet (Figure 4, Sections A-A' and B-B') northeast of State High-
way 70. The fault plane probably rises southwest of State Highway 70
over the northeast end of the Del Rio thrust sheet (Figure 4, Sections
C-C' and D-D' and Figure 5). Thinning of the thrust sheet southwest-
ward is thus mainly a result of wedging out above the Del Rio thrust
sheet.

The intensity of folding is even greater in the northeasternmost
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exposed portion of the Del Rio thrust sheet. Successively younger for-
mations exposed northeastward at the toe of the Del Rio thrust sheet
indicate that the sheet wedges from the base upward in a northeastward
direction. Elevationsalong the traces of both the Meadow Creek Moun-
tain fault and the Buffalo Mountain fault are between +1, 500 and +2, 0090
feet (Plate 1); however, surface elevations along streams in the north-
eastern portion of the Del Rio thrust sheet are generally below +1, 500
feet (Plate 1). The northeastern end of the Del Rio thrust sheet was
probably bevelled by the over-riding Buffalo Mountain thrust sheet,
Subsequent erosion has caused the southwest end of the Buffalo Mountain
thrust sheet to retreat eastward and has further thinned the Del Rio
thrust sheet, producing windows on anticlinal folds within the thrust
sheet.

The sum effect of the wedging of the two thrust sheets and of
successively deeper erosion from Greene Mountain southwestward a-
cross the Paint Creek syncline to the northeastern portion of the Del
Rio thrust sheet is to reveal the changes in structural nature that occur
with depth in the major thrust sheets. The two small windows in the
Del Rio thrust sheet provide an important clue to the structural nature
and history of the thrust sheets forming and underlying the southwestern
Bald Mountains. The windows indicate that the imbricate thrust planes
within the major thrust sheets assume a sub-horizontal warped attitude
at depth, Folding, both of imbricate thrust faults and of beds overlying
them, is most intense near the planes of the major thrust faults, The
folds project upward in the beds overlying each imbricate thrust fault,
gradually attenuating and disappearing where the strata are thickest,
as is the case northeast of the Paint Creek syncline in the Buffalo
Mountain thrust sheet.

CONCLUSIONS

The controlling mechanism of the structure of the southweste rn
Bald Mountains is thrust faulting, Portions of two major thrust sheets,
similar in stratigraphy but of contrasting structural character, are
present in the southwestern Bald Mountains. The Del Rio thrust sheet
is the older of the two thrust sheets and is overridden at its north-
eastern end by the Buffalo Mountain thrust sheet. FEach thrust sheet
moved into place, became folded and concurrently broken into smaller
thrust blocks,

Although their structural histories are similar, the two thrust
sheets differ in surficial structural character in the following respects:

1. Folds exposed at the surface in the Del Rio thrust sheet are
less uniform in trend and express more intense deformation than folds
exposed at the surface in the Buffalo Mouuntain thrust sheet with the ex-
ception of the Paint Creek syncline.

2, Thrust faults within the Del Rio thrust sheet do not dip so
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steeply as thrust faults within the Buffalo Mountain thrust sheet, and in
addition they are warped, Their sub-horizontal, warped nature is in-
dicated by small windows and by erratic traces.

Factors contributing to the surficial structural differences bet-
ween the two thrust sheets are:

1. The Del Rio thrust sheet apparently wedges out from the
base upward northeastward in the southwestern Bald Mountains, pinch-
ing out beuneath the southwest end of the Buffalo Mountain thrust sheet.

2. The northeastern end of the Del Rio thrust sheet was over-
ridden and presumably bevelled by the Buffalo Mountain thrust sheet.

3. Surface drainage in the Del Rio thrust sheet, more highly
developed than in the Buffalo Mountain thrust sheet, has dissected and
thinned the Del Rio thrust sheet to a greater extent than the Buffalo
Mountain thrust sheet.

Thrust faults within the Buffalo Mountain thrust sheet probably
flatten at depth before intersecting the Buffalo Mountain thrust fault.
Both the Buffalo Mountain and Del Rio thrust sheets are deformed most
at their bases by folds and small-scale thrust faults that attenuate up-
ward, The northeasternmost exposed portion of the Del Rio thrust
sheet is probably a surface representation of the structural nature of
the Buffalo Mountain thrust sheet at depth.

" The Buffalo Mountain thrust sheet is synclinal in structure in
the southwestern Bald Mountains; synclines have been faulted and im-
bricated.
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PHOSPHOSIDERITE ASSOCIATED WITH NELSONITE ROCK

IN NELSON COUNTY, VIRGINIA

By

Richard.S. Mitchell
University of Virginia

ABSTRACT

Greenish cryptocrystalline phosphosiderite occurs in hydro-
thermally altered ilmenite-nelsonite dike rocks in Nelson County, Vir-
ginia, Strengite, dimorphous with phosphosiderite, also occurs but it
is much rarer. Indexed X-ray powder data are given for both minerals.
In addition to ilmenite and apatite which are essential to the nelsonite,
associated minerals are talc, chlorite, anatase, and wavellite.

INTRODUCTION

The relatively rare mineral phosphosiderite (also called meta-
strengite or clinostrengite) occurs in altered ilmenite-nelsonite dike
rocks in Nelson County, Virginia. Although the mineral has not been
reported from the area previously it was referred to by Watson and
Taber (1913, p, 106) as an unknown ''compound of bluish-green color."
A recent examination of nelsonite specimens in Lewis Brooks Museum
(University of Virginia), as well as mew materials in the field, has
shown that phosphosiderite is quite common, especially at one locality
near Jonesboro.

DATA FOR PHOSPHOSIDERITE

Green to bluish-green cryptocrystalline phosphosiderite cccurs
in nelsonite either as thin crusts with small botryoidal structures, or
as seam fillings, or intimately associated with talc as powdery coat-
ings. The mineral is brittle, has a conchoidal fracture, a hardness of
4.5, and a pale greenish-yellow streak, Thin fragments are translu-
cent,

A pure sample of phosphosiderite was submitted for semiquanti-
tative spectrographic analysis. The chief elements detected are iron
and phosphorous, Trace amounts of numerous other elements were
found, but only Al03, 1.5 percent, and TiO2, 0.75 percent, are signifi-
cant, This analysis verified phosphosiderite and eliminated any
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possibility that the mineral might be the aluminum analog metavariscite,
or some other closely related mineral.

Initially the mineral was identified from X-ray powder films.
The measured interplanar spacingsgiven in Table 1 represent the aver-
age of values obtained from four films of four different samples, made
with CuKa radiation in cameras with 11, 46 cm diameters. In order to
index the reflections all interplanar spacings allowed down through
2. 27A were calculated from the followrng monoclinic data of McConnell
(1939, 1940): =5.30 A, b=09, 79 A, c=8. 67A B =90.6°, P2;/n.
In his earlier paper McConnell (1939) gave calculated interplanar spac-
ings, but the indexing is not entirely correct because the space group
was not certain at that time, The PZl/n symmetry (McCounnell, 1940)
requires that hOl reflections be absent when h +1 is odd and that OkO
be absent when k is odd. The observed X-ray powder data for the Nel-
son County phosphosiderite compare well with those of Neves (1958),
Wilk (1959/60), Kahler (1962), and Arlidge et al, {1963), and are con-
formable to the structure of the mineral recé_rzti-;determined by Moore
(1966). Impurity lines of some X-ray films were shown to belong to
trace amounts of the dimorphous mineral strengite, an observationalso
made by McConnell (1939),

ASSOCIATED STRENGITE

Strengite was discernible on two specimens where it is closely
associated with phosphosiderite. The strengite is light gray and has a
dull to greasy luster. It occurs as masses, or as crusts and cavity
fillings with small botryoidal development., Identification was based on
X-ray powder data. The measured data in Table 2 represent averaged
values obtained from four films (CuK® radiation, 11,46 cm diameter
cameras) The calculated data represent all possible values through
2,27 A based on the orthorhombic cell reported on ASTM powder dif-
fraction datz card 15-513: a = 10, 05A b=9,92A, c=8.74 A, Pcab.
Moore (1966) who has studied the structural relationships between
strengite and phosphosiderite has pointed out that these dimorphous
minerals commonly occur together,

OCCURRENCE

The Nelson County phosphosiderite and strengite were first
noticed on specimens (V4081, V4183) in Lewis Brooks Museum. Un-
fortunately the exact localities for these specimens are not known. A
visit was made to the Roseland area where there are numerous nelsonite
dikes (Watson and Taber, 1913; Ross, 1941; Hillhouse, 1960), Al-
though several outcrops were examined phosphosiderite and strengite
were found only in nelsonite on the Edwin Hughes farm a short distance
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Table 1. X-ray powder data for phosphosiderite, Nelson County, Vir-
ginia, Filtered copper radiation,

hkl

011
020
110
101
101
002
021
111
111
012
120
121
121
022
112
112
031
130, 122
013
122
131, 200
131
032
210
103
103
023
113
211
040, 211,
041
132
132, 220
202

meter.

113

d (calc. ).A

6. 49
4.90
4,66
4.54
4,50
4, 34
4.26
4. 12
4,09
. 96
.60
.33
.31
.25
.19
16
. 05
.78
.17
.76
. 65
. 64
.61
56
55
.53
. 49
. 47
. 46
. 45
.36

[SSAN ]
NN W W
N W

d (meas, )1§

&8
3.

2.

2.

2
2,
2.
1.
1.
1.
1.

39

60
32

.78

65

.55

.44

.35

27
12
07
01
81
76
71
66

Cameras of 11, 46 cm dia-

I (obs.)

Vs

vw

VVWwW

VVW

NA'AY

VVWwW

VVW
VVW
VVW-

VVwW
VVW
NA'A
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Table 2. X-ray powder data for strengite, Nelson County, Virginia.
Filtered copper radiation., Cameras of 11,46 cm diameter.

hkl d (calc. )A d (meas. )A I (obs.)

111 5. 49 5.51 m

200 5.03

020 4,96 4, 94 mw-

120 4, 45

002 4, 37 4, 38 ms

201 4, 36

012, 211 3.99 3.98 mw-

121 3,96

112 3.72 3.72 VW

220 3,53

202 3,30

022 3,28 3,28 VVW

221 3,27

212 3.13

122 3.12 3.11 mw

311 2.98 3,00 w

131 2.96 2.94 w

320 2.78

222 2,75

113 2. 69

321 2.65

032 2. 64

231 2,63 2.62 VVW

312 2. 57

132 2.55 2.54 mw

203 2,52

400 2.51

040 2.48

213, 123 2.44 2,45 VW

401, 140 2.41

411 2.35 2. 36 VVW

322 2. 34

232 2.33

141 2.32

331 2,27 2,28 VVW
2,13 VW
2.08 VVW
2,00 vw
1. 96 VW
1. 76 vVWw
1. 72 VVW
1.65 vw
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southeast of Jonesboro. Float pieces are common near the barn, and
very rich phosphosiderite specimens occur in place at a deep roadcut
in the barnyard.

Bright green phosphosiderite covers large joint planes of the
nelsonite rock, In addition to porcelaneous masses, often with small
botryoidal surfaces, the mineral also occurs as narrow veins in the
nelsonite, and as cellular replacements of apatite grains in the rock,
and very commonly mixed with talc to form light green powdery sur-
faces on the rock., Very thin bluish-white, white, and tan crusts over-
lying deep emerald-green phosphosiderite crusts were shown by X-ray
study also to be phosphosiderite. Strengite is very rare at the Hughes
farm. Here it occurs as light gray greasy masses and crusts with
botryoidal development within the small subspherical cavities formerly
occupied by apatite grains in nelsonite.

In addition to ilmenite and apatite, which are the essential min-
erals of the nelsonite matrix rock, talc is the most common associated
mineral at the Hughes locality. It occursas earthy tomicaceous mass-
es and especially as coatings on joint planes. Individual plates up to
2.5 mm across were noticed. It varies from white to green, the green
being due to admixed phosphosiderite. Yellowish micaceous chlorite
occurs in some specimens. One nelsonite piece was found in which
black ilmenite is replaced by greenish-brown anatase in such a way as
to retain the original texture of the rock. In this one the essential
apatite was not appreciably changed. In many other specimens, how-
ever, apatite is deeply etched and altered. Fine-grained white wavel-
lite, stained brown, was found on some weathered spongelike nelsonite
masses from which the apatite was removed. The writer has been un-
able to identify some additional minerals, one a thin yellowish-green
botryoidal crust and another a small globule of white radiating needles.

Phosphosiderite and strengite have obviously formed from the
alteration of nelsonite, iron coming from ilmenite and phosphate from
apatite. The close association of these minerals with talc suggests that
the alteration was hydrothermal. Studies of nelsonite dikes also led
Hillhouse (1960, p. 124) to conclude that slight hydrothermal activity
continued after the deposition of the dikes and resulted in the alteration
of nelsonite minerals. However, he did not mention the secondary
phosphates described here, In contrast, the writer did not find phos-
phosiderite in the numerous very weathered float specimens of nelsonite
he examined.
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